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ABSTRACT  
Researchers from the fields of computer vision and deep learning, have been using image processing techniques 
to detect, recognize, and identify objects of interest within overhead imagery. However, as with all machine 
learning problems, researchers tend to have a limited scope of methods to apply (defined by their background) 
and a limited amount of time to tune their models. 

In recent years, the field of automated machine learning (autoML) has quickly attracted a significant amount of 
attention both in academia and industry. The driving force is to reduce the amount of human intervention required 
to process data and create models for classification and prediction, a tedious and arbitrary process for a data 
scientist that often does not result in a global optimum with respect to accuracy or other metrics.  

Our entry into the field is EMADE, the Evolutionary Multi-objective Algorithm Design Engine, which affords 
several benefits not found in other autoML solutions including the ability to stack machine learning models, 
process time-series data using dozens of signal-processing techniques, and efficiently evaluate algorithms on 
multiple objectives.  

We show several modifications to EMADE to take it from only supporting processing feature and time-series data 
to processing more computationally-intense high-resolution imagery. To demonstrate EMADE’s capabilities, we 
leverage the xView data challenge (http://www.xviewdataset.org), a dataset of overhead imagery comprised of 1 
million object instances of 60 different classes. We show results on using EMADE to produce improved algorithms 
for the xView data challenge over algorithms created by researchers for ISR applications. One such solution 
produced by EMADE is a histogram of oriented gradients on a canny edged detected wavelet transform of a 
224x224 image chip. When scored as a binary classifier for buildings, this evolved algorithm achieved a specificity 
of 97.2% and a sensitivity of 94.3%. 

INTRODUCTION 

The field of intelligence, surveillance, and reconnaissance (ISR) is currently ripe for automation with machine 
learning. A large portion of ISR is the identification of potential points, persons, or objects of interest in feeds of 
imagery. Screening this imagery is a mundane and repetitive task currently handled by scores of analysts who are 
hand-annotating image data.  Machine learning can serve this industry to supplement the analysts by serving as a 
prescreening tool, drawing attention to objects of interest. Because much of their burden is relieved, an analyst is 
able to be more productive and less prone to errors. 

Researchers from the fields of computer vision and deep learning, have been using image processing techniques 
to detect, recognize, and identify objects of interest within overhead imagery. However, as with all machine 
learning problems, researchers tend to have a limited scope of methods to apply (defined by their background) and 
a limited amount of time to tune their models. 
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In recent years, the field of automated machine learning (autoML) has quickly attracted a significant amount of 
attention both in academia and industry. The driving force is to reduce the amount of human intervention required 
to process data and create models for classification and prediction, a tedious and arbitrary process for a data 
scientist that often does not result in a global optimum with respect to accuracy or other metrics.  

AutoML frameworks such as TPOT [1], s-mGP-ML and t-mGP-ML [2], and AutoStacker [3] all feature unique 
ways of applying genetic programming (GP) in order to evolve machine learning pipelines. None of these, 
however, support the ingestion of imagery that would be needed in order to enter the field of ISR. The only autoML 
framework to presently support working with imagery is Google Cloud AutoML 
(https://cloud.google.com/automl/), which is currently in its alpha stage. 

Our entry to the field is EMADE, the Evolutionary Multi-objective Algorithm Design Engine, which affords 
several benefits not found in other autoML solutions including the ability to stack machine learning models, 
process time-series data using dozens of signal-processing techniques, and efficiently evaluate algorithms on 
multiple objectives. 

In this paper we show several modifications to EMADE to take it from only supporting processing feature and 
time-series data to processing more computationally-intense high-resolution imagery. Our modifications include 
support for batch learning, integration of deep neural network models, and improved caching of intermediary 
results. The methods shown here can be adapted to other autoML frameworks in order to more efficiently evaluate 
algorithms on imagery applications. We also show EMADE's greatest strength is its ability to leverage well-tested 
methods in newly evolved solutions, and the ability to build off these existing algorithms guarantee better results. 

ANALYSIS OF EXISTING METHODS 

The techniques (computer vision) used to perform such tasks fall into two major schools of thought: the use of 
standard machine learning classifiers (bag of visual words, support vector machines, etc) with emphasis in 
preprocessing the images or video frames; and the use of convolutional neural networks with the emphasis rather 
on the architecture of the network itself.  

The motivation behind the more traditional approach is that statistical methods will be used to first isolate and 
detect objects (preprocessing) and then pass the object through some machine learner (classifier). Sample methods 
include simple thresholdings [4], histogram of oriented gradients [5], Gaussian mixture models [6], kernel density 
estimations [7], and Bayesian classifiers [8]. Despite being statistically and mathematically validated, these 
methods lack robust performance in accuracy and speed.  

 

Figure 1. Block diagram for processing imagery using the Histogram of Oriented Gradients (HOG) 
method. 

A popular method, Figure 1, is with histogram of oriented gradients (HOG) and support vector machines (SVM). 
First step is to crop and resize the training and testing data to the same image ratio and dimensions. Then apply 
HOG to the frame to capture how and where the pixel values change throughout; this will serve as the frame 
features that we will then pass through the SVM to build a classification model. 
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In 2012, with the introduction and success of AlexNet [9], which used a large and deep convolutional neural 
network (CNN) architecture with nonlinear activation function ReLU (rectified linear unit), the field of computer 
vision shifted to fully adopt CNNs. Neural network frameworks were developed, massive image and video datasets 
were made public for training, and benchmarks were established to push the state of the art in multi-object 
localization, segmentation, classification, and tracking while also minimizing computation time. Despite the 
incredible success and attention that CNNs have brought to the field, the design of the network architectures still 
remains relatively subjective and experimental.   

 

Figure 2. Example of process flow for Faster R-CNN algorithm. 

A successful object detector and classifier for video data is Faster R-CNN [10]. This network, Figure 2, can be 
broken down into an ensemble of other networks: a Region Proposal Network (RPN) to gather cropped frames 
with various ratios and dimensions that have high likelihood of containing a foreground object, a Region of Interest 
(ROI) Pooling to reduce overlapping regions into a fixed feature map, a classifier to determine the label of the 
proposed region, and a regressor to improve how well the object was bounded in the image.  

The recent paradigm shift of computer vision accelerated growth in many relevant applications like that of 
autonomous vehicles, yet the success in aerial imagery and video remains lacking. One of the unique challenges 
is the large and small scales of the images and of the objects, respectively. A typical image covers several square 
kilometers with tens of millions of pixels (>10MB) while any single object can fill up to 50 pixels total. Many 
papers have attempted to adapt various computer vision techniques to the problem of aerial imagery [11] [12] [13] 
[14], but they are limited in scope to higher-altitude satellite imagery, as opposed to lower-altitude surveillance 
video. 
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Figure 3. Example (non-real) illustration of multi-objective error plot. 

The proper strengths and weaknesses for any model are primarily scoped by the error rates, and by the type and 
quality of training data. A model trained on satellite data will perform poorly on low-altitude unmanned-aerial-
vehicle data. Also, two models with similar cumulative error rates may indeed vary inversely in false positive and 
false negative rates. In the ISR domain, false positives may not be a large issue with a human analyst still 
supervising the model, but a false negative will let a target go unnoticed which can be costly. If the models share 
a common validation data set, we can plot the algorithms in this 'error-space' as shown in Figure 3. (This plot is 
not actual data, but merely an illustration to analyze algorithms.) Now we can more objectively and 
characteristically compare models. 

In a minimization problem like this, our goal is to push the solutions to zero error (0,0); with multiple objectives, 
we expect to develop a 'front' of solutions that do not 'dominate' each other in all objectives; our front of best 
solutions is drawn in red. While, from the plot (of fake data), we can't say that a CNN model performs strictly 
better than a HOG, we can say that both models perform better than the Bag of Words in all objectives. This is an 
important characteristic of our multi-objective framework EMADE, and a strategy to encourage a diverse pool of 
solutions. 

THE EMADE FRAMEWORK  

We developed a framework called EMADE (Evolutionary Multi-objective Algorithm Design Engine) that serves 
to automatically explore and push the trade-off space shown in Figure 3 towards the theoretical ideal solution that 
exists in the bottom left-hand corner of this graph, i.e., a solution with no errors. 

Ideal, zero error 
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To accomplish this exploration, development of algorithms with EMADE leverages the best human-derived 
machine learning, image processing, signal processing, and track processing building blocks (also known as 
primitives) from the targeted as well as other related application domains.  Given these building blocks, tree 
structures of these building blocks can be used to describe an algorithm.  We then seed the evolutionary process 
with the best human-derived algorithms from the targeted domain.  Seeding is accomplished by building and 
testing the tree structures for human-derived algorithms from that domain.  EMADE then evolves new algorithms 
through bio-inspired approaches using concepts such as mating, mutation, and natural selection to maintain a 
population of algorithms. In this metaphor, each algorithm is a genome, and the genes are the fundamental building 
blocks that constitute them. The results of this evolutionary process are not a single algorithm, but a set of 
algorithms that provide a trade-off in the objectives measured, e.g., false positive and false negatives. Each point 
in this trade-off space represents the performance of one such algorithm. 

EMADE successfully produced classification and regression algorithms for feature-data [15] [16] as well as 
classification algorithms for time-series data [17]. The remainder of this paper shows unique features of EMADE 
for processing imagery and discusses its potential for data fusion.  

IMAGE PROCESSING IN EMADE 

Imagery algorithms are computationally expensive, requiring both significant time and memory to evaluate. 
Because EMADE requires the evaluating thousands of potential algorithms to evolve algorithms, we implemented 
a caching mechanism to save processing time, and a batched processing methodology for machine learners that 
support it to reduce memory load. 

To cache results, EMADE uses a hash string representation (parse tree) of each created algorithm with an SHA-
256 hash. EMADE stores the objective score vector of the individual with its associated hash. When a new 
individual is created through mating, mutation, or generation, its string representation is hashed to determine if it 
already exists in the hash table. If it does, the values are pulled from the table, and it is not sent for evaluation. This 
trades off the relatively inexpensive cost of hashing each new genome for the time intensive cost of reevaluating 
an already computed individual.  

EMADE also hashes results of machine learning training (in effect, subtrees). Before training a machine learning 
algorithm, EMADE hashes the input feature data along with the learner type and parameters. If this hash exists 
then EMADE reads the trained machine learner from disk, else, it writes the trained learner to disk when the 
training completes. This hashing method is significantly cheaper than retraining a learner on the same set of 
features. It also helps as subtrees are exchanged in mating, meaning multiple individuals reuse the same trained 
and evaluated branches. At the end of each generation, the cache is pruned to maximize an expected benefit: 

𝐵𝐵 = ∑ 𝑏𝑏𝑖𝑖𝑖𝑖 = ∑ 𝑟𝑟𝑖𝑖𝑖𝑖 𝑡𝑡𝑖𝑖, 

where 𝑏𝑏𝑖𝑖 is the benefit that hashing learner 𝑖𝑖 provides, 𝑟𝑟𝑖𝑖 represents the probability that the trained model will be 
used again on the same data, with the same model parameters, and 𝑡𝑡𝑖𝑖 is the time it took to train model 𝑖𝑖. The cache 
uses a greedy method to select trained models with the largest benefit until it reaches a cache size limit. 

Another speedup leveraged in EMADE is a tiered dataset capability [15]. Tiered datasets allow EMADE to quickly 
test new algorithms on small datasets before spending further computational resources on an evaluation that may 
prove fatal. This capability is essential for processing large numbers of image processing algorithms. Testing an 
algorithm on a small number of images can quickly reveal errors that will emerge on a large dataset, such as 
dimensionality agreement or failure to construct useful features. 
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ADDING COMPUTER VISION PRIMITIVES TO EMADE 

Table 1. Wrapped OpenCV Functions as Primitives in EMADE. 

Mininmum to zero To unit8 To uint8 scaled To float 
To float normalize Edge detection Canny Corner detection Harris Corner detection min eigenval 
Highpass Fourier ellipsoid Lowpass Fourier shift Highpass Fourier shift Highpass Fourier Gaussian 
Highpass Fourier uniform Highpass unsharp mask Highpass Laplacian Highpass Sobel derivative 
Lowpass filter median Median blur Lowpass filter average Blur 
Lowpass filter Gaussian Lowpass filter bilateral Lowpass Fourier ellipsoid Lowpass Fourier Gaussian 
Lowpass Fourier uniform Threshold binary Threshold to zero  Morph erosion rect 
Morph erosion ellipse Morph erosion cross Morph dilate rect Morph dilate ellipse 
Morph dilate cross Morph open rect Morph open ellipse Morph open cross 
Morph close rect Morph close ellipse Morph close cross Morph gradient rect 
Morph gradient ellipse Morph gradient cross Morph tophat rect Morph tophat ellipse 
Morph tophat cross Morph blackhat rect Morph blackhat ellipse Morph blackhat cross 
Contours all Contours min area Contours max area Contours convex concave 
Contours min length Contours max length Contour mask Contour mask min area 
Contour mask max area Contour mask convex Contour mask min length Contour mask max length 
Contour mask range length Contour mask min enclosing circle Contour mask max enclosing circle Contour mask min extent enclosing circle 
Contour mask max extent enclosing circle Contour mask range extent enclosing circle Contour mask min aspect ratio Contour mask max aspect ratio 
Contour mask range aspect ratio Contour mask min extent Contour mask max extent Contour mask range extent 
Contour mask min solidity Contour mask max solidity Contour mask range solidity Contour mask min equ diameter 
Contour mask max equ diameter Contour mask range equ diameter Threshold n largest Threshold n largest binary 

 

Table 1 shows image processing techniques implemented from OpenCV that are wrapped in EMADE; however, 
most of these are not state-of-the-art features for object detection or recognition within imagery. After a brief 
literature review, we implemented the following techniques as primitives in EMADE: 

• Histogram of oriented gradients (HOG) 

• DAISY features [18] 

• Grey level co-occurrence matrices (GLCM) [19] 

• Batched stochastic gradient descent (SGD) 

• Batched passive aggressive classifier 

• Deep neural network classifier (DNN) 

Capabilities like HOG, DAISY, and GLCM, are important for EMADE because they allow traditional machine 
learning methods (i.e. non-DNN) to operate effectively on image data. They can operate effectively because these 
techniques are able to find useful features within images that are robust to scaling, translations, and rotations. 

PROCESSING THE XVIEW DATASET 

This paper represents the first foray into creating machine learning algorithms for imagery with EMADE. As such, 
we bounded the task to the creation of a binary classifier of image chips. From the xView dataset, we created 
224x224 pixel image chips. We chose this size to support the implementation of pre-trained deep neural networks 
(that are configured to these dimensions) as primitives. For each chip, we labeled the chips that contained buildings 
as positive test cases and those that did not contain buildings as negative test cases. 
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DEEP NEURAL NETWORK RESULTS 

The current leading algorithms for image classification from large datasets are deep neural networks. To compare 
performance with DNNs, we trained a Resnet v2 101 model [20] on an equal amount of building and background 
images. Since this a traditional classification task, we did not have to make major modifications except for 
balancing the data, which is important for effective learning with a DNN. This Resnet architecture achieved an 
accuracy of 91.6%, a true positive rate of 90.5%, and a precision of 92.6%. Table 2 shows the confusion matrix 
for the trained Resnet architecture. 

Table 2. Performance of Resnet v2 101 Model. 

 Not Building Building 
Not Building 8455 648 
Building 869 8228 

EMADE RESULTS 

We ran EMADE on a subset of the xView dataset to produce a binary classifier. We constructed a two-tiered 
dataset structure to allow the individuals to fail fast. The first tier contained 300 training images and 100 testing 
images. The second tier contained 3,200 training images and 800 testing images. 

An evaluation on the first-tier dataset took EMADE on average 72.53 seconds, while the second-tier averaged 
522.31 seconds. Out of 5,270 candidate algorithms, EMADE found 3053 that did not perform well enough to 
promote to the next tier. This means the tiered dataset structure saved 381 CPU-hours of processing time at the 
expense of 44.66 CPU-hours of redundant computation on successful individuals. Over the course of the 
optimization, EMADE ran for a total of approximately 430 CPU-hours. Without a tiered structure, EMADE would 
have taken 765 CPU-hours. Therefore, the tiered dataset structure offered a savings of about 44 percent. 

For the xView problem, we also compiled statistics on the success of the caching implementation. Reuse of 
existing cached results from primitives saved 68 CPU-hours of processing time. This savings came at a cost of 
initially storing the cached results, which took 10 CPU-hours to process the 4,000 images. Our caching 
implementation netted 58 hours, which represents about a 12% improvement overall in EMADE throughput. 

Figure 4 shows the non-dominated frontier produced by EMADE after evaluating over five thousand candidate 
algorithms. Note the Resnet DNN architecture described in the previous section received a score of 0.0375 false 
positive rate and 0.0025 false negative rate. This DNN outperforms a great deal of the more traditional computer 
vision techniques in EMADE, and was co-dominant with five EMADE non-dominated solutions. At the time we 
ran this experiment, we were unable to get the DNN architecture running on the cluster EMADE used, and so we 
could not implement it as a primitive in EMADE. In Figure 4, the green points were hand-crafted algorithms based 
on computer vision techniques used to seed the optimization. Note that almost all of these techniques are 
dominated (outperformed in both dimensions) by EMADE solutions. 
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Figure 4. Non-dominated frontier of xView binary classification for buildings in EMADE. 

Figure 5 shows one of the EMADE evolved solutions that was co-dominant with the DNN. The evolved solution 
outperformed the DNN on false positive rate, while underperforming on true positive rate. 

 

Figure 5. An evolved solution produced by EMADE with false positive rate of 0.0285 and false 
negative rate of 0.0575. 
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EMADE AS A TOOL FOR FUSION 

Although the results in this paper focus on a single imagery dataset, EMADE can serve as a fusion engine in the 
ISR domain through its data-agnostic processing. EMADE maintains an instance-oriented representation of data, 
but each instance can be a list of data sources for the observation. Because EMADE dispassionately constructs 
algorithms from fundamental building blocks from the literature, we can also implement vital steps of the fusion 
process into the search space for possible algorithm pipelines. Opening the fusion process to EMADE means it 
can optimize the interpolation and registration steps alongside steps like feature engineering and classification. 

CONCLUSIONS 

EMADE is a powerful autoML tool, agnostic to both domain and data, capable of producing a non-dominated 
frontier of solutions across competing performance measures. This work demonstrates EMADE’s capabilities on 
the important domain of image processing for ISR applications. We showed the ability to combine and optimize 
high-level, state-of-the-art techniques into new algorithms. We improved EMADE by creating new primitives, 
developing seed algorithms, and making changes to the infrastructure to support image data and increase 
throughput by caching data on disk. 

Future work could look at how to better implement deep neural networks into EMADE as primitives that can be 
trained during the evolutionary process. One could also identify how to optimize not only the hyperparameters but 
the architectures (i.e., layers and configurations) of the deep neural networks as well.  
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